The Euler constant : γ
نویسنده
چکیده
It is not known if γ is an irrational or a transcendental number. The question of its irrationality has challenged mathematicians since Euler and remains a famous unresolved problem. By computing a large number of digits of γ and using continued fraction expansion, it has been shown that if γ is a rational number p/q then the denominator q must have at least 242080 digits. Even if γ is less famous than the constants π and e, it deserves a great attention since it plays an important role in Analysis (Gamma function, Bessel functions, exponential-integral, ...) and occurs frequently in Number Theory (order of magnitude of arithmetical functions for instance [11]).
منابع مشابه
The Generalized-Euler-Constant Function γ(z) and a Generalization of Somos’s Quadratic Recurrence Constant
We define the generalized-Euler-constant function γ(z) = ∑∞ n=1 z n−1 ( 1 n − log n+1 n ) when |z| ≤ 1. Its values include both Euler’s constant γ = γ(1) and the “alternating Euler constant” log 4 π = γ(−1). We extend Euler’s two zeta-function series for γ to polylogarithm series for γ(z). Integrals for γ(z) provide its analytic continuation to C − [1,∞). We prove several other formulas for γ(z...
متن کاملLimits and inequalities associated with the Euler-Mascheroni constant
(i) We present several limits associated with the Euler-Mascheroni constant. (ii) Let γ = 0.577215 . . . be the Euler-Mascheroni constant, and let Tn = ∑n k=1 1 k − ln ( n+ 1 2 + 1 24n ) and Pn = ∑n k=1 2 2k−1 − ln(4n). We determine the best possible constants α, β, a and b such that the inequalities 1 48(n+ α)3 ≤ γ − Tn < 1 48(n+ β)3 and 1 24(n+ a)2 ≤ Pn − γ < 1 24(n+ b)2 are valid for all int...
متن کاملSome New Inequalities for Gamma and Polygamma Functions
In this paper we derive some new inequalities involving the gamma function Γ, polygamma functions ψ = Γ′/Γ and ψ′. We also obtained two new sequences converging to Euler-Mascheroni constant γ very quickly.
متن کاملInequalities for the Euler-Mascheroni constant
Let Rn = n k=1 1 k −log n + 1 2 , H(n) = n 2 (Rn −γ), n = 1, 2,. . ., where γ is the Euler-Mascheroni constant. We prove that for all integers n ≥ 1, H(n) and [(n + 1/2)/n] 2 H(n) are strictly increasing, while [(n + 1)/n] 2 H(n) is strictly decreasing. For all integers n ≥ 1, 1 24(n + a) 2 ≤ Rn − γ < 1 24(n + b) 2 with the best possible constants a = 1 24[−γ + 1 − log(3/2)] − 1 = 0.55106. .. a...
متن کاملEULER’S CONSTANT, q-LOGARITHMS, AND FORMULAS OF RAMANUJAN AND GOSPER
The aim of the paper is to relate computational and arithmetic questions about Euler’s constant γ with properties of the values of the q-logarithm function, with natural choice of q. By these means, we generalize a classical formula for γ due to Ramanujan, together with Vacca’s and Gosper’s series for γ, as well as deduce irrationality criteria and tests and new asymptotic formulas for computin...
متن کاملFormulas of Ramanujan and Gosper
Abstract. The aim of the paper is to relate computational and arithmetic questions about Euler’s constant γ with properties of the values of the q-logarithm function, with natural choice of q. By these means, we generalize a classical formula for γ due to Ramanujan, together with Vacca’s and Gosper’s series for γ, as well as deduce irrationality criteria and tests and new asymptotic formulas fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004